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I. INTRODUCTION

The electrothermal accelerator (ET gun) is an advanced hypervelocity
propulsion concept currently tinder study at the US Army Ballistic Research
Laboratory. In the ET process, electrical energy is introduced into a plasma-
generating capillary through a wire connecting the forward and rear electrodes
of the capillary. A high current flows through the wire. causing it to
explode, thereby establishing the plasma. The plasma flows rapidly out of the
capillary and int- the chamber containing the working fluid. Simultaneously,
the plasma is replenished by ablation of the polyethylene wall surrounding the
discharge. The resulting dissociation of the working fluid through its
interaction with the plasma results in a pressure rise and subsequent
acceleration of the projectile. The final step of the process occurs after
the plasma jet has been extinguished. During this phase, the p~ojectile is
acted upon by the expanding gases produced during the dissociation process.
The entire ET process can be seen schematically fn Figure 1.

now mscura IShC ataj

W ria-.aa^orn 71ud !ntcrwt h(C) Taailc 1.

Figure 1. Schematic of the ET Process

This paper reports on a theoretical study that was undertaken to evaluate
the relative merits of potential working fluids through an analysis of their
thermochemical properties. These properties can then be used in interior
ballistic codes to estimate the performance of the fluid as a propellant in an
ET weapon system by computing the velocity of the projectile. Table I gives a
listing of each of the fluids that were studied. The fluids are arranged into
three general classes: endothermic mixtures, mildly exothermic mixtures, and
highly exothermic mixtures. For the purpose of this paper, endothermic
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mixtures are mixtures which have an effective energy density (impetus/(gama-k))
less than the amount of elecLrical energy added. Mildly exothermic mixtures
have an effective energy density In the range from approximately equal and up
to 20% greater than the amount of electrical energy added, and highly
exothermic mixtures have an effecLive energy density that is more than 20%
greater than the amount of electrical energy added. These definitions are
illustrated graphically in Figure 2.

Table I. Working Fluids On Which The-mochemical Calculations Have

Been Performed (% Mass)*

ENDOTHERMIC MIXTURES

50% Aluminum/50% Water
Water
Lithium Hydride
5% Lithium Hydride/95% Methanol
PIydrcgen
50% Titanium Hydrida/50% Warr

MTLDLY EXOTHFRMIC MIX.TRES

40% Lithium Borohydride/60% Water
Methanol
nctane

45% Lithium Hydride/55% Water
Hydrogen Peroxide
12.5% Titanium Hydride/37.5% Aluminum/50% Water

HIGHLY EXOTHERMIC MIXTRES

Liquid Gun Propellant "l845"
20% Lithium Hydride/80% Hydrogen Peroxide
JA2
25% Octane/75% Hydrogen Peroxide
20% Kerosene/80% Hydrogen Peroxide

*100% hydrogen peroxide was used in working fluids containing hydrogen

peroxide.

In this report, four mixtures are discussed which exhibit general trends

seen for the various classes. The working fluids to be reported on in this
paper include water (H20), a mixture of aluminum (Al), titanium hydride
(TiH 2 ), and water, a mixture of octane (Co 8) and hydrogen peroxide (H202),
and a mixture of lithium borohydride (LiBH4 ) and water. Water was chosen as
an example of endothermic mixtures which produce moderate molecular weight
products. The lithium borohydride/water mixture is a mildly exothermic
mixture, which produces predominantly hydrogen gas, a very low molecular
weight product. The titanium hydride/aluminum/ water mixture is mildly
exothermic and produces low molecular weight products. The addition of
titanium hydride serves two purposes: firstly, it serves as a hydrogen gas
generator, and secondly, its reaction with water produces titanium oxide which

6



may act as a barrel coating agent thus protecting the gun from erosion.1 The
octane/hydrogen peroxide mixture is highly exothermic which produces
moderate molecular weight products. Detailed thermochemical properties for
all potential working fluids listed in Table I are piven in Appendix A. In
all mixtures containing hydrogen peroxide, it was ,tecided to use 100%
peroxide. While thiL may not be practical based uion handling concerns, it
should, in theory, give the highest impetus possiblo for mixtures containing
hydrogen peroxide.

60
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Working Fluid

Highly Ezolhemk

Working Fluid
40
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00
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EkiciEr nugy Denwly J/9

Figure 2. Effective Energy Density vs. Electrical Energy laput Plots for
Endothermic, Mildly Exothermic, and Highly Exothermic Mixtures

II. APPROACH

The thermodynamic equilibrium code BLAKE was used to calculate the
thermochemical properties of the mixture resulting from the interaction of the

working fluid and plasma. BLAKE was specifically written to compute the
properties of gun propellants at chamber conditions, namely pressures up to

700 MPa and temperatures between 1500 and 3000 K; 2 however, the results are
valid for temperatures up to approximately 6000 K. Under these conditions,

the gases are too dense to use the ideal gas equation of state to calculate
their thermochemical properties. The truncated virial equation of state is
more applicable to gases under these conditions; hence, it has been
incorporated into BLAKE as the equation of state. 3 The gases produced in the

ET process are created under the same temperature and pressure conditions as
the gases resulting from the combustion of conventional gun propellants.
Since BLAKE has been successfully used to calculate the thermochemical
properties of conventional propellants, 2 it is our belief that BLAKE is the
code of choice for calculating the thermochemical properties of ET mixtures.
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Equation I is the truncated virial equation. In this equation, P is the
pressure in atmospheres, V is the volume in liters, n is the number of toles
of gas, R is the universal gas constant, and T is the temperature In degrees
Kelvin. The constants B (T) and C (T) are the second and third virial
co~fficient. The virial coefficients are calculated using the Lennard-Jones
6,1? intermo'ecular Potential fu -

nt
- -  Fr more details on the truncated

equation, the reader is referred to Freedman's report. 2

PV = nRT 11 + (n/V)R(T) + (ni .,C(T)] (i)

To perform the thermochemical calculations, an initial loading density Is
considered. The loading density is a ratio of the working fluid mass to the
chamber volume. For each mixture, the thermochemical properties were computed
at a loading density of 0.2 g/cc. This loading density is typically used in
interior ballistic calculations because it takes into account the volume of
the chamber and the volume of the barrel. The equilibrium properties computed
include the temperature, pressure, impetus, average molecular weight of the
gas phase products, co-volume, frozen gamma, and the concentrations of the
species generated from the reactions. For the purpose of this study, the
properties of most interest are temperature and impetus. Propellant impetus,
I, is used by ballisticians to describe the potential of a propellant to do
work. Tt is defined as:

7 - RT/m (2)

where R is the universal gas constant, T is the flame temperature, and m is
the average molecular weight of the gaseous combustion products. It can be
seen from Eq. (2) that the impetus of a mixture is inversely proportional to
the molecular weight of the products at a fixed temperature. In systems where
the final products include condensed phase products, Eq. (2) is more
appropriately expressed as:

I- (Mir T T) RT/m (3)

where M is the mass of the gas phase products and MThT is the total mass of
the products (gas phase and condensed phase). BLAKE uses Eq. (3) to calculate
the impetus of a mixturt.

One of the difficulties encountered in calculating the thermochemical
properties of the various mixtures was how to handle the interaction of the
plasma and the working fluid. The plaswa typically consistr of dissociated
ionized polyethylene with a temperatule of several tens of thousands degrees
Kelvin. BLAKE is unable to accommodate atoms or ions as input constituents to
the code. Thus, it was decidgd to simulate the plasma as a high energy, low
molecular weight constituent. To allow for the direct comparison of the
calculated thermochemical properties of each of the mixtures, the amount of
electrical energy (plasma) per gram' of working fluid (KJ/g) was varied by 1
KJ/g increments. The thermochemical properties of the solid gun propellant
JA2 were used as benchmarks to assess the performance potential of the ET
working fluid/plasma mixtures. JA2 has excellent propellant rroperties with
an impetus of 1143.9 J/g at a flame temperature of 3424 K.

For each of the ET mixtures studied, it was desired to determine the
optimum impetus as a function of the mass ratio of the components. Two

I I I Ii . ....



approaches were consit:Led for determining the optimum. The 6irst approach
was to calculate the thermochemical properties of the stolchiometric mixture
without any electrical energy added. The major advantage of this method is
that the thermochemical properties of a mixture in which complete combustion
of the mix would occur are calculated. The second approach was to use the
mixture that provided tle highest impetus, again without any electrical energy

added to the system. Th chief advantage of this approach is that the rixture
with the highest impetus will, theoretically, provide the best perfornrance in
a gun. For either approach, the temperature of the optimum mixture was
constrained to a temperature below 3400 K (for reasons that will be discussed
later). Figure 3 shows that a stoichiometric mixture of octane/hydrogen

peroxide (approximately 10% octane/90% hydrogen peroxide by weight) has an
impetus less than the maximum. The solid vertical line at approximately 77%
hydrogen peroxide is the point at which the temperature of the mixture at
equilibrium reaches 3400 K. All mixtures to the left of this line have a
temperature less than 3400 K; those to the right of this line have a
temperature greater than 3400 K. From the figure, it can be seen that the
stoichiometric mixture also has a higher than acceptable temperature. To find
the optimum mix, a series of BLAKE calculations were performed for each
mixture whereby the concentration of each of the components of the mix were
varied by 5% by weight. For example, calculations were made for 95% octane/5%
hydrogen peroxide down to a 5% octane/95% hydrogen peroxide mix, each time
decreasing the octane mix by 5% and increasing the hydrogen peroxide
concentration by 5%. The mixture that produced the highest impetus within the
temperature constraint was then selected as the optimum mixture and was used
for the set of calculations in which electrical energy was added. The optimum
mixtures were found to be 25% octane/75% hydrogen peroxide, 40% lithium
borohydride/60% water, and a 50%/50% mix of aluminum/water and titanium
hydride/water, which is equivalent to 12.5% titanium hydride/37.5%
aluminum/50% water. Table 2 lists the thermochemical properties of each of
these mixtures to which 5 KJ/g of electrical energy has been added. The
thermochemical properties of JA2 (without the addition of electrical energy)
are also shown in Table 2.

III. RESULTS AND DISCUSSION

Figure 4 shows a plot of the impetus versus temperature for each of the
mixtures studied, the benchmark, JA2, and the conventional solid propellants
M30 and KOIEl. Each of the data points represent the amount of electrical
energy added per mass of compound (KJ/g); for the lithium borohydride/water
mix, this ratio varies from 0 to 17, for the octane/peroxide 0 to 5, for water

3 to 10, and 0 to 5 for the titanium hydride/aluminum/water mixture. The
solid line through the data points is a linear least squares fit. Figure 4
has been divided into 4 regions, with JA2 serving as the center. Region 1 is

the area of high temperature (above 3400 K) and high impetus. If conventional
wisdom were to prevail, the maximum desired temperature in a fielded weapon is
approximately 3400 K, due to barrel erosion resulting from the high
temperature gases. Therefore, all mixtures with data points in region I may
not be suitable for application in an ET gun. In practice, however,
hydrodynamic and nonequilibrium thermodynamic considerations may reduce

possible bore erosion in ET guns. Early observations have indicated little or
no evidence of barrel erosion in ET gun firings in htgh temperature

situations.5  It is hypothesized that a thin coating of unvaporized fluid may

temporarily protect the inner gun surfaces from the hot gases, possibly



extending the temperature range for 4he working fluids. Experimental efforts

to evaluate this effect are planned. Thus, the high Iapetus of these

mixtures may justify their use in an ET weapon despite their high temperature.

Opthnmun M~3tus LiX
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Figure 3. Impetus vs. Concentration Plot for Octane/.4ydrogen
Peroxide Mixtures

Table 2. T" rch.mical Properties of the Miutures Studied

ULimHR!,Jer Al/T132 11420 120 4" 1s1 2 , JA2

EI ectrlcal Iiergy Input (KJ/g) 5 5 5 5 0

Temperature (K) 1966 4725 1855 4784 3424

Presle (WPa) 331.85 294 .09 174.11 624 A2 25.34
Impetus (J/G) 1235.7 1256.1 a %. 2426.6 1143.9

M01 Wt Can 9.007 4 54 1R."14 1f .393 2, 136
Co-volis (00/) 1.276 0.729 0.042 1.114 n.991
Gasa 1.2296 1.2496 i .2987 i .2113 1.2254
Total Cas Produced (moles/kg of
compound) 75.59 31.97 55.51 61.00 40.18

Total Coodensed Produced (moles/hg

of compound) 7.78 7,A2 0 0 0
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Region 2 is the ideal regime for a working fluid, because it represents
the area of high impetus and low temperature. A working fluid with these
characteristie should provide high performance in a gun system with little
concern of barrel erosion due to high temperature gases. Working fluids
falling within region 3 are low impetus-low temperature propellants. Despite
the lower impetus, this region does not represent unacceptable characteristics
for gun propellants. hs can be seen in the figure, M311I, a solid propellant

currently used in artillery applications, and M30, a propellant used in air
defense applications fall within this regime. Working fluids within region 4
exhibit the properties of low impetus and high temperature. These fluids are
unacceptable for use in an ET gun system since the impetus calculated for
these mixtures is too low to justify the use of such a high temperature
mixture.

There are two qualitative trends that can be observed from the data plots
in Figure 4. Firstly, the addition of electrical energy serves to increase
the impetus as well as the temperature of all the mixtures. Secondly, the
additon of electrical energy does not result in an equal increase in impetus
and temperature from mixture to mixture. This can be seen in the differences
in the slope of the least squares fit to the data. The reasons for the
differences in these slopes will be discussed below.

ID JA2
0 40% LiBH4/60% H20
* 25% OCTANE/75% PEROXIDE

3000 + 12.5% TiH2/37.5% Ai/50% H20 o
* 20
M30
M31EI

2500

5 2000

.)
S1500 2

_ woo 0

0
500 -_x 3 4

0x
-  

Io I I I 1 _ _ _ _ _ _ _

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
TEMPERATURE (K)

Figure A. Impetus vs. Temperature Plots for 25% Octanel75 Hydrogen
Peroxide, 12.5% Titanium Hydride/37.5% Aluninum/50% Watar, 40% Lithium

Borohydride/60% Water, Water, JA2, M30, and I1EI



As stated earlier, water represents the class of endotnrutc systems that
produce moderate molecular weight products and is used as a baseline
comparison in this study. As electrical energy is added, complete
vaporization of the water occurs, resulting in water vapor being the
predominate final product. The slope of the data points in this system is
Indicative of the slope seen for mixtures that produce moderate molecular
weight gas phase products. Water is essentially a region 3-region 2
propellant. Xs can he seen In Figure 4, the borobvdride/water mixture has a

higher impetus over the sane temperature range, hence, it is unlikely that
water would he used in a fieldpd weapon.

The titanium hvdride/aluninitr/water system is substantially hotter than
the water system. It is also imnortant to notice the decrease in the slope of
the fit to the data pnint, in t.'e Lita:i,l hvdride/aluminum/water mixture in
comparison to the water systevl. This is due to the fact that this reaction
produces approximately g moles of condensed phase species, namely liquid Al20 3

and liquid Ti309 , Der kilogram )f working fluid while producing only 32 moles
of gas. These condensed phases serve to deplete the availability of
propulsion gases, thereby decreasing the impetus. From the data presented in

Figure 4, this mixture is a region 4 propellant, and for reasons presented
earlier, is not a likely candidate for use as a propellant in an FT gun.

The two most promising mixtures studied, in terms of impetus and
temperature, are the octane/peroxide and lithium borohydride/water mixtures.
One of the attractive features of the octane/peroxide mixture is the increase
in impetus at approximately the same flame temperature as JA2. When I KJ of
electrical energy is added to I gram of the octane/peroxide mixture, the
calculated impetus is 1694.6 J/C. This is a 49% increase over JA0, a high
impetus propellant. The increase in impetus of the octane/peroxide mixture
(compared to the titanium/hydride/aluminum/water mixture) is due to the fact
that no condensed phase products are formed; the major products are gaseous

HO, H, CO, and CO2 . The slope of the least squares fit is very similar to
tat of water indicating the formation of these average molecular weight gas
products. The other attractive feature is the relatively low power
requirements necessary to achieve this high impetus compared to the other
mixtures. This working fluid may be useful in an application which requires a
high impetus propellant with low power requirements and which can tolerate a
higher temperature.

The lithium borohydride/water mixture is a Region 2 propellant which
offers a reasonably high impetjs propellant system with a very low flame
temperature. However, there are several concerns with this working fluid.

First, metal hydrides, such as lithitm horohydride, react vigorously with
water liberating hydrogen gas, both an advantage and a disadvantage. On the
positive side, 62-64 moles of hydrogen gas are liberated per kilogram of
mix. It is the presence of this low molecular weight gas that provides the
propulsive force necessary to drive the projectile. There are about 8 moles
of condensed phase products per kilogram of working fluid produced in the
reaction, however, their concentration is negligible in comparison to the
hydrogen gas. It is also the presence of hydrogen in such high quantities
that serves to increase the calculated impetus. This is also the reason for
the large slope in the fit of the data points shown in Figure 4. On the
regative side, the generation of such large quantities of hydrogen may cause
difficulties. As the "hot" hydrogen gas exits the muzzle of the gun, its

12



reaction with "cool" atmospheric oxygen may create a large muzzle flash. It
is hypothesized that the presence of lithium metal ions in the muzzle effluent
may help to interrupt the reaction network, thus preventing muzzle flash.

Programs for evaluating the potential occurrence of muzzle flash in gas
mixtures are currently available. Such computations would seem to be an
important first step in examining candidate working fluid systems in general.

A second concern is that the reactivity of the lithium borohydride and
water may necessitate their physical separation until the plasma jet enters
the chamber. The lithium borohydride may be able to be encapsul&ted in a

material that does not react with water. As the plasma jet enters the
chamber, the jet will dissociate and ionize the encapsulation material, thus

allowing the borohydride-water reaction to proceed. A third concern is the
high power requirements necessary to raise the impetus to levels comparable

with the octane/peroxide system. However. the lithium borohydride/water
system would be very attractive for applications in which low flame

temperature is required.

IV. CONCLUSIONS

A thermochemical study has been completed to evaluate the relative merits
of several candidate working fluids in an ET gun. The flame temperatures of

the 25% octane/75% hydrogen peroxide system and the 12.5% titanium
hydride/37 .5% aluminum/50% water system are roughly comparable for equivalent
electrical energy input, however the octane/peroxide mix yields a higher
impetus. In fact, the octane/peroxide mixture is calculated to have a higher
impetus than JA2, a commonly used solid gun propellant. The 40% lithium
borohydride/60% water system is an attractive candidate working fluid in

systems which require a low flame temperature. For all of the mixtures

studied, the impetus and temperature of the mixture are shown to increase as
the amount of electrical energy added to the system increases. However, the
magnitude of the increase in impetus and temperature varies from mixture to
mixture despite the addition of equivalent amounts of electrical energy. The

differences in the magnitude of the increase is due to the formation of

different amounts of low molecular weight final products.

Future studies will include interior ballistic computations for
representative ET gun systems based upon these thermochemical calculations.

G-s temperature and heat transfer measurements will also be considered since
barrel erosion is a major concern at high temperatures. The application of
encapsulation techniques to the lithium borohydride/water system will also be

investigated.
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APPENDIX A

Thermochemical Values for Various
Working Fluids in Combination with

Electrical Energy Input
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TABLE A-3. Lithium Hydride

T'T' 'It "It YS4W n ~ Iq It * aq aqal

e4e .- we--3 %S-rz i w eC iM Tw o a r'=e4en-wq

r ~ ~ ~ ~ ~ ~ ~ C f4 eq C4 f4 e 44 44 4w 44 4

~V VO00 NO e :rv MNn@
w C 4 4 M = r4 M w r r t % %

fn E lr e le

v.. "dMcUC )v - %C

-~~r N C4-~~r r4V C4 C r4--' C4fr4 Q

- o -f * %V en @%44qo No M go NeQn - ac

aL%0 h0 o0 -r-N o% 1 nv. a leta Inn..aa.
t) r ta

-w %0L * . N

C4 r4P n T wv;

t-w - n ma i I % W q-4w 4V4V 0 -I
elb 'Te-oa : l -I qC qe C I v

ano 4 nc

q% ap% nc i )J -% n\

32



TABLE A-4. Lithium Hydride & Methanol
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TABLE A-4 Cont. Lithium Hydride & Methanol
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TABLE A-4 Cont. Lithium Hydride a Methanol
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TABLE A-5. Hydrogen
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TABLE A-5 Cont. Hydrogen
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TABLE A-5 cont. Hydrogen
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TABLE A-6. Titanium Hydride &Water
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TABLE A-7. Lithium Borohydride & Water
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TABLE A-7 Cont. Lithium Borohydride &Water
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TABLE A-8. Methanol
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TABLE A-9. Octane
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TABLE A-9 Cont. Octane
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TABLE A-1O. Lithium Hydride & Water
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TABLE A-il. Htydrogen Peroxide
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TABLE A-12. Titaniwm Hydride &Aluminum 4 Water

t - -~ n%

t t-: -t- V

en% 0 I

Go f
Vi

*R L
1 :9 T 1

CA.e
in %

fne iw*SL "

40



TABLE A-it. Liquid Propellant LP1845
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TABLE A-14. Lithium Hydride & Hydrogen Peroxide
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TABLE A-15. JAZ
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TABLE A-i6. octane &Hydrogen Peroxide
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TABLE A-17. Kerosene & Hydrogen Peroxide
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